DAVE MACLEOD

View Original

The Patties diet

What is it specifically about the western diet that is unhealthy? Is it the meat? As many of you will have gathered, this a question I have become interested in over recent years. I have watched many friends, family and others suffer with the countless manifestations of diet related disease and our entire health service is in the process of being crushed by it. So it is important to me.

The more I have looked at the evidence, the less I am convinced that meat is playing a causative role in this process and the more I think that its restriction may make things worse. To shed some light on this, I went to the epitome of junk food, McDonald’s, and ate nothing but their burger patties for two months.

It was a way to draw attention to the need to think a bit more carefully about what is in our food and which parts of it are beneficial, harmful or neutral.

Below is a list of references from the video.

1. Lane, M.M., et al., Ultra-Processed Food Consumption and Mental Health: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients, 2022. 14(13). https://pubmed.ncbi.nlm.nih.gov/35807749/

2. Godos, J., et al. Ultra-Processed Food Consumption and Depressive Symptoms in a Mediterranean Cohort. Nutrients, 2023. 15,  DOI: 10.3390/nu15030504. https://pubmed.ncbi.nlm.nih.gov/36771211/

3. Maffetone, P.B. and P.B. Laursen, The Prevalence of Overfat Adults and Children in the US. Frontiers in Public Health, 2017. 5(290). https://www.frontiersin.org/article/10.3389/fpubh.2017.00290

4. Araújo, J., J. Cai, and J. Stevens, Prevalence of Optimal Metabolic Health in American Adults: National Health and Nutrition Examination Survey 2009–2016. Metabolic Syndrome and Related Disorders, 2018. 17(1): p. 46-52. https://doi.org/10.1089/met.2018.0105

5. O’Hearn, M., et al., Trends and Disparities in Cardiometabolic Health Among U.S. Adults, 1999-2018. Journal of the American College of Cardiology, 2022. 80(2): p. 138-151. https://www.sciencedirect.com/science/article/pii/S0735109722049944

6. Leroy, F., et al., Animal board invited review: Animal source foods in healthy, sustainable, and ethical diets - An argument against drastic limitation of livestock in the food system. Animal, 2022. 16(3): p. 100457. https://pubmed.ncbi.nlm.nih.gov/35158307/

7. Lescinsky, H., et al., Health effects associated with consumption of unprocessed red meat: a Burden of Proof study. Nature Medicine, 2022. 28(10): p. 2075-2082. https://doi.org/10.1038/s41591-022-01968-z

8. Grosso, G., et al., Health risk factors associated with meat, fruit and vegetable consumption in cohort studies: A comprehensive meta-analysis. PLOS ONE, 2017. 12(8): p. e0183787. https://doi.org/10.1371/journal.pone.0183787

9. Lee, J.E., et al., Meat intake and cause-specific mortality: a pooled analysis of Asian prospective cohort studies. The American Journal of Clinical Nutrition, 2013. 98(4): p. 1032-1041. https://doi.org/10.3945/ajcn.113.062638

10. Grasgruber, P., et al., Food consumption and the actual statistics of cardiovascular diseases: an epidemiological comparison of 42 European countries. Food & nutrition research, 2016. 60: p. 31694-31694. https://pubmed.ncbi.nlm.nih.gov/27680091

11. Park, K., et al., Unprocessed Meat Consumption and Incident Cardiovascular Diseases in Korean Adults: The Korean Genome and Epidemiology Study (KoGES). Nutrients, 2017. 9(5): p. 498. https://www.ncbi.nlm.nih.gov/pubmed/28505126

12. Grasgruber, P., et al., Global Correlates of Cardiovascular Risk: A Comparison of 158 Countries. Nutrients, 2018. 10(4). http://www.mdpi.com/2072-6643/10/4/411/pdf

13. Maximova, K., et al., Co-consumption of Vegetables and Fruit, Whole Grains, and Fiber Reduces the Cancer Risk of Red and Processed Meat in a Large Prospective Cohort of Adults from Alberta’s Tomorrow Project. Nutrients, 2020. 12(8). https://pubmed.ncbi.nlm.nih.gov/32751091/

14. Petermann-Rocha, F., et al., Do all vegetarians have a lower cardiovascular risk? A prospective study. Clinical Nutrition, 2023. 42(3): p. 269-276. https://doi.org/10.1016/j.clnu.2023.01.010

15. Bouvard, V., et al., Carcinogenicity of consumption of red and processed meat. The Lancet Oncology, 2015. 16(16): p. 1599-1600. https://doi.org/10.1016/S1470-2045(15)00444-1

16. IARC, Red meat and processed meat volume 114; IARC monographs on the evaluation of carcinogenic risks to humans. 2018: IARC. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Red-Meat-And-Processed-Meat-2018

17. Singh, P.N. and G.E. Fraser, Dietary Risk Factors for Colon Cancer in a Low-risk Population. American Journal of Epidemiology, 1998. 148(8): p. 761-774. https://doi.org/10.1093/oxfordjournals.aje.a009697

18. Hur, S.J., et al., Controversy on the correlation of red and processed meat consumption with colorectal cancer risk: an Asian perspective. Crit Rev Food Sci Nutr, 2019. 59(21): p. 3526-3537. https://pubmed.ncbi.nlm.nih.gov/29999423/

19. Zheng, C., et al., Biomarker-Calibrated Red and Combined Red and Processed Meat Intakes with Chronic Disease Risk in a Cohort of Postmenopausal Women. The Journal of Nutrition, 2022. 152(7): p. 1711-1720. https://doi.org/10.1093/jn/nxac067

20. Feng, Q., et al., Raw and Cooked Vegetable Consumption and Risk of Cardiovascular Disease: A Study of 400,000 Adults in UK Biobank. Frontiers in Nutrition, 2022. 9. https://www.frontiersin.org/articles/10.3389/fnut.2022.831470

21. Allen, M.R., et al., A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. npj Climate and Atmospheric Science, 2018. 1(1): p. 16. https://doi.org/10.1038/s41612-018-0026-8

22. Stanley, P.L., et al., Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agricultural Systems, 2018. 162: p. 249-258. http://www.sciencedirect.com/science/article/pii/S0308521X17310338

23. Cain, M., et al., Improved calculation of warming-equivalent emissions for short-lived climate pollutants. npj Climate and Atmospheric Science, 2019. 2(1): p. 29. https://doi.org/10.1038/s41612-019-0086-4

24. Lynch, J.M., et al., Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environmental Research Letters, 2020. http://iopscience.iop.org/10.1088/1748-9326/ab6d7e

25. Bai, Y. and M.F. Cotrufo, Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, 2022. 377(6606): p. 603-608. https://doi.org/10.1126/science.abo2380

26. Johnson, D.C., et al., Adaptive multi-paddock grazing management's influence on soil food web community structure for: increasing pasture forage production, soil organic carbon, and reducing soil respiration rates in southeastern USA ranches. PeerJ, 2022. 10: p. e13750. https://pubmed.ncbi.nlm.nih.gov/35873909/

27. Maestre, F.T., et al., Grazing and ecosystem service delivery in global drylands. Science, 2022. 378(6622): p. 915-920. https://doi.org/10.1126/science.abq4062

28. Naidu, D.G.T., S. Roy, and S. Bagchi, Loss of grazing by large mammalian herbivores can destabilize the soil carbon pool. Proceedings of the National Academy of Sciences, 2022. 119(43): p. e2211317119. https://doi.org/10.1073/pnas.2211317119

29. Norton, L.R., et al., Can pasture-fed livestock farming practices improve the ecological condition of grassland in Great Britain? Ecological Solutions and Evidence, 2022. 3(4): p. e12191. https://doi.org/10.1002/2688-8319.12191

30. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G, Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. 2013: R. Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/3/i3437e/i3437e.pdf

31. Adesogan, A.T., et al., Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. Global Food Security, 2019: p. 100325. http://www.sciencedirect.com/science/article/pii/S2211912419300525

32. Kronberg, S.L., et al., Review: Closing nutrient cycles for animal production – Current and future agroecological and socio-economic issues. Animal, 2021. 15: p. 100285. https://www.sciencedirect.com/science/article/pii/S1751731121001282

33. Clark, M. and D. Tilman, Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 2017. 12(6): p. 064016. https://dx.doi.org/10.1088/1748-9326/aa6cd5

34. Poore, J. and T. Nemecek, Reducing food's environmental impacts through producers and consumers. Science, 2018. 360(6392): p. 987-992. https://pubmed.ncbi.nlm.nih.gov/29853680/

35. O’Malley, K., A. Willits-Smith, and D. Rose, Popular diets as selected by adults in the United States show wide variation in carbon footprints and diet quality. The American Journal of Clinical Nutrition, 2023. https://www.sciencedirect.com/science/article/pii/S0002916523005117

36. Nordhagen, S.B., T, Haddad, L., The role of animal source foods in healthy, sustainable and equitable food systems. Discussion Paper Series 5. 2020, Geneva, Switzerland: G.A.f.I.N. (GAIN). https://www.gainhealth.org/resources/reports-and-publications/gain-discussion-paper-series-5-role-animal-source-foods-healthy-sustainable-equitable-food-systems

37. Beal, T., et al., Friend or Foe? The Role of Animal-Source Foods in Healthy and Environmentally Sustainable Diets. The Journal of Nutrition, 2023. 153(2): p. 409-425. https://www.sciencedirect.com/science/article/pii/S0022316622131378

38. Beal, T., F. Ortenzi, and J. Fanzo, Estimated micronutrient shortfalls of the EAT&#x2013;<em>Lancet</em> planetary health diet. The Lancet Planetary Health, 2023. 7(3): p. e233-e237. https://doi.org/10.1016/S2542-5196(23)00006-2

39. McAuliffe, G.A., et al., Protein quality as a complementary functional unit in life cycle assessment (LCA). The International Journal of Life Cycle Assessment, 2023. 28(2): p. 146-155. https://doi.org/10.1007/s11367-022-02123-z

40. Agency, E.E., Soil Carbon. 2022: E.E. Agency. https://www.eea.europa.eu/publications/soil-carbon

41. Rayne, N. and L. Aula Livestock Manure and the Impacts on Soil Health: A Review. Soil Systems, 2020. 4,  DOI: 10.3390/soilsystems4040064. https://www.mdpi.com/2571-8789/4/4/64

42. Rui, Y., et al., Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proceedings of the National Academy of Sciences, 2022. 119(7): p. e2118931119. https://doi.org/10.1073/pnas.2118931119

43. Geiger, F., et al., Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 2010. 11(2): p. 97-105. https://www.sciencedirect.com/science/article/pii/S1439179109001388

44. Rabalais, N.N., R.E. Turner, and W.J. Wiseman, Gulf of Mexico Hypoxia, A.K.A. “The Dead Zone”. Annual Review of Ecology and Systematics, 2002. 33(1): p. 235-263. https://doi.org/10.1146/annurev.ecolsys.33.010802.150513

45. Ben-Dor, M., R. Sirtoli, and R. Barkai, The evolution of the human trophic level during the Pleistocene. Am J Phys Anthropol, 2021. 175 Suppl 72: p. 27-56. https://pubmed.ncbi.nlm.nih.gov/33675083/

46. Carriedo, A., et al., The corporate capture of the nutrition profession in the USA: the case of the Academy of Nutrition and Dietetics. Public Health Nutr, 2022: p. 1-15. https://www.cambridge.org/core/journals/public-health-nutrition/article/corporate-capture-of-the-nutrition-profession-in-the-usa-the-case-of-the-academy-of-nutrition-and-dietetics/9FCF66087DFD5661DF1AF2AD54DA0DF9

47. M, S.D., et al., Consumption of meat, traditional and modern processed meat and colorectal cancer risk among the Moroccan population: A large-scale case-control study. Int J Cancer, 2020. 146(5): p. 1333-1345. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.32689?download=true

48. Murphy, S.P. and L.H. Allen, Nutritional importance of animal source foods. J Nutr, 2003. 133(11 Suppl 2): p. 3932s-3935s. https://pubmed.ncbi.nlm.nih.gov/14672292/

49. O'Hearn, A., Can a carnivore diet provide all essential nutrients? Curr Opin Endocrinol Diabetes Obes, 2020. 27(5): p. 312-316. https://pubmed.ncbi.nlm.nih.gov/32833688/

50. McClellan, W.S. and E.F. Du Bois, CLINICAL CALORIMETRY: XLV. PROLONGED MEAT DIETS WITH A STUDY OF KIDNEY FUNCTION AND KETOSIS. Journal of Biological Chemistry, 1930. 87(3): p. 651-668. https://www.sciencedirect.com/science/article/pii/S0021925818768427

51. Thorpe, G.L., TREATING OVERWEIGHT PATIENTS. Journal of the American Medical Association, 1957. 165(11): p. 1361-1365. https://doi.org/10.1001/jama.1957.02980290001001

52. Lennerz, B.S., et al., Behavioral Characteristics and Self-Reported Health Status among 2029 Adults Consuming a "Carnivore Diet". Curr Dev Nutr, 2021. 5(12): p. nzab133. https://pubmed.ncbi.nlm.nih.gov/34934897/

53. Brietzke, E., et al., Ketogenic diet as a metabolic therapy for mood disorders: Evidence and developments. Neurosci Biobehav Rev, 2018. 94: p. 11-16. https://www.sciencedirect.com/science/article/abs/pii/S0149763418303762

54. Danan, A., et al., The Ketogenic Diet for Refractory Mental Illness: A Retrospective Analysis of 31 Inpatients. Frontiers in Psychiatry, 2022. 13. https://www.frontiersin.org/articles/10.3389/fpsyt.2022.951376

55. Norwitz, N.G., et al., Elevated LDL Cholesterol with a Carbohydrate-Restricted Diet: Evidence for a “Lean Mass Hyper-Responder” Phenotype. Current Developments in Nutrition, 2022. 6(1): p. nzab144. https://doi.org/10.1093/cdn/nzab144

56. Norwitz, N.G., et al. The Lipid Energy Model: Reimagining Lipoprotein Function in the Context of Carbohydrate-Restricted Diets. Metabolites, 2022. 12,  DOI: 10.3390/metabo12050460. https://pubmed.ncbi.nlm.nih.gov/35629964/

57. Després, J.-P., et al., Hyperinsulinemia as an Independent Risk Factor for Ischemic Heart Disease. New England Journal of Medicine, 1996. 334(15): p. 952-958. https://doi.org/10.1056/NEJM199604113341504

58. Ballantyne Christie, M., et al., Influence of Low High-Density Lipoprotein Cholesterol and Elevated Triglyceride on Coronary Heart Disease Events and Response to Simvastatin Therapy in 4S. Circulation, 2001. 104(25): p. 3046-3051. https://doi.org/10.1161/hc5001.100624

59. Kawamoto, R., et al., Low density lipoprotein cholesterol and all-cause mortality rate: findings from a study on Japanese community-dwelling persons. Lipids in Health and Disease, 2021. 20(1): p. 105. https://doi.org/10.1186/s12944-021-01533-6

60. Georgoulis, M., et al., Long-term prognostic value of LDL-C, HDL-C, lp(a) and TG levels on cardiovascular disease incidence, by body weight status, dietary habits and lipid-lowering treatment: the ATTICA epidemiological cohort study (2002–2012). Lipids in Health and Disease, 2022. 21(1): p. 141. https://doi.org/10.1186/s12944-022-01747-2

61. Rong, S., et al., Association of Low‐Density Lipoprotein Cholesterol Levels with More than 20‐Year Risk of Cardiovascular and All‐Cause Mortality in the General Population. Journal of the American Heart Association, 2022. 11(15): p. e023690. https://doi.org/10.1161/JAHA.121.023690

62. Yi, S.W., et al., Association between low-density lipoprotein cholesterol and cardiovascular mortality in statin non-users: a prospective cohort study in 14.9 million Korean adults. Int J Epidemiol, 2022. 51(4): p. 1178-1189. https://pubmed.ncbi.nlm.nih.gov/35218344/

63. Ennezat, P.V., et al., Extent of Low-density Lipoprotein Cholesterol Reduction and All-cause and Cardiovascular Mortality Benefit: A Systematic Review and Meta-analysis. Journal of Cardiovascular Pharmacology, 2023. 81(1). https://journals.lww.com/cardiovascularpharm/Fulltext/2023/01000/Extent_of_Low_density_Lipoprotein_Cholesterol.6.aspx

64. Madsen, C.M., A. Varbo, and B.G. Nordestgaard, Low HDL Cholesterol and High Risk of Autoimmune Disease: Two Population-Based Cohort Studies Including 117341 Individuals. Clin Chem, 2019. 65(5): p. 644-652. https://pubmed.ncbi.nlm.nih.gov/30745290/

65. Mørland, J.G., et al., Associations between serum high-density lipoprotein cholesterol levels and cause-specific mortality in a general population of 345 000 men and women aged 20–79 years. International Journal of Epidemiology, 2023: p. dyad011. https://doi.org/10.1093/ije/dyad011

66. Yokoyama, Y., S.M. Levin, and N.D. Barnard, Association between plant-based diets and plasma lipids: a systematic review and meta-analysis. Nutr Rev, 2017. 75(9): p. 683-698. https://pubmed.ncbi.nlm.nih.gov/28938794/

67. Gaziano, J.M., et al., Fasting triglycerides, high-density lipoprotein, and risk of myocardial infarction. Circulation, 1997. 96(8): p. 2520-5. https://pubmed.ncbi.nlm.nih.gov/9355888/

68. Jeppesen, J., et al., Low triglycerides-high high-density lipoprotein cholesterol and risk of ischemic heart disease. Arch Intern Med, 2001. 161(3): p. 361-6. https://pubmed.ncbi.nlm.nih.gov/11176761/

69. Shishehbor, M.H., B.J. Hoogwerf, and M.S. Lauer, Association of triglyceride-to-HDL cholesterol ratio with heart rate recovery. Diabetes Care, 2004. 27(4): p. 936-41. https://pubmed.ncbi.nlm.nih.gov/15047652/

70. Luz, P.L.d., et al., High ratio of triglycerides to hdl-cholesterol predicts extensive coronary disease. Clinics, 2008. 63. https://europepmc.org/article/MED/18719750

71. Vega, G.L., et al., Triglyceride–to–High-Density-Lipoprotein-Cholesterol Ratio is an Index of Heart Disease Mortality and of Incidence of Type 2 Diabetes Mellitus in Men. Journal of Investigative Medicine, 2014. 62(2): p. 345-349. https://doi.org/10.2310/JIM.0000000000000044

72. Li, H.Y., et al., Optimal cutoff of the triglyceride to high-density lipoprotein cholesterol  ratio to detect cardiovascular risk factors among Han adults in Xinjiang. J Health Popul Nutr, 2016. 35(1): p. 30. https://pubmed.ncbi.nlm.nih.gov/27586369/

73. Caporaso, N.E., et al., Insulin Resistance in Healthy U.S. Adults: Findings from the National Health and Nutrition Examination Survey (NHANES). Cancer Epidemiology, Biomarkers & Prevention, 2020. 29(1): p. 157-168. https://doi.org/10.1158/1055-9965.EPI-19-0206

74. Caselli, C., et al., Triglycerides and low HDL cholesterol predict coronary heart disease risk in patients with stable angina. Scientific Reports, 2021. 11(1): p. 20714. https://doi.org/10.1038/s41598-021-00020-3

75. Catanzaro, R., et al., Triglycerides to high-density lipoprotein cholesterol ratio for diagnosing nonalcoholic fatty liver disease. Minerva Gastroenterol (Torino), 2022. 68(3): p. 261-268. https://pubmed.ncbi.nlm.nih.gov/33829728/

76. Widmer, A., M.G. Mercante, and H.J. Silver TG/HDL Ratio Is an Independent Predictor for Estimating Resting Energy Expenditure in Adults with Normal Weight, Overweight, and Obesity. Nutrients, 2022. 14,  DOI: 10.3390/nu14235106. https://pubmed.ncbi.nlm.nih.gov/36501139/

77. Kosmas, C.E., et al., The Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio as a Risk Marker for Metabolic Syndrome and Cardiovascular Disease. Diagnostics (Basel), 2023. 13(5). https://pubmed.ncbi.nlm.nih.gov/36900073/

78. Boizel, R., et al., Ratio of triglycerides to HDL cholesterol is an indicator of LDL particle size in patients with type 2 diabetes and normal HDL cholesterol levels. Diabetes Care, 2000. 23(11): p. 1679-85. https://pubmed.ncbi.nlm.nih.gov/11092292/

79. Cromwell, W.C. and J.D. Otvos, Low-density lipoprotein particle number and risk for cardiovascular disease. Curr Atheroscler Rep, 2004. 6(5): p. 381-7. https://pubmed.ncbi.nlm.nih.gov/15296705/

80. McLaughlin, T., et al., Is There a Simple Way to Identify Insulin-Resistant Individuals at Increased Risk of Cardiovascular Disease? The American Journal of Cardiology, 2005. 96(3): p. 399-404. https://www.sciencedirect.com/science/article/pii/S0002914905007411

81. Quispe, R., et al., Relationship of the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to the remainder of the lipid profile: The Very Large Database of Lipids-4 (VLDL-4) study. Atherosclerosis, 2015. 242(1): p. 243-50. https://pubmed.ncbi.nlm.nih.gov/26232164/

82. Borrayo, G., et al., TG/HDL-C RATIO AS CARDIO-METABOLIC BIOMARKER EVEN IN NORMAL WEIGHT WOMEN. Acta Endocrinol (Buchar), 2018. 14(2): p. 261-267. https://pubmed.ncbi.nlm.nih.gov/31149268/

83. Räihä, I., et al., Effect of serum lipids, lipoproteins, and apolipoproteins on vascular and nonvascular mortality in the elderly. Arterioscler Thromb Vasc Biol, 1997. 17(7): p. 1224-32. https://pubmed.ncbi.nlm.nih.gov/9261250/

84. Panagiotakos, D.B., et al., Importance of LDL/HDL cholesterol ratio as a predictor for coronary heart disease events in patients with heterozygous familial hypercholesterolaemia: a 15-year follow-up (1987-2002). Curr Med Res Opin, 2003. 19(2): p. 89-94. https://pubmed.ncbi.nlm.nih.gov/12755140/

85. Shai, I., et al., Multivariate assessment of lipid parameters as predictors of coronary heart disease among postmenopausal women: potential implications for clinical guidelines. Circulation, 2004. 110(18): p. 2824-30. https://pubmed.ncbi.nlm.nih.gov/15492318/

86. Mora, S., et al., Atherogenic Lipoprotein Subfractions Determined by Ion Mobility and First Cardiovascular Events After Random Allocation to High-Intensity Statin or Placebo: The Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) Trial. Circulation, 2015. 132(23): p. 2220-9. https://pubmed.ncbi.nlm.nih.gov/26408274/

87. Katzke, V.A., et al., Blood lipids and lipoproteins in relation to incidence and mortality risks for CVD and cancer in the prospective EPIC–Heidelberg cohort. BMC Medicine, 2017. 15(1): p. 218. https://doi.org/10.1186/s12916-017-0976-4

88. Pichler, G., et al., LDL particle size and composition and incident cardiovascular disease in a South-European population: The Hortega-Liposcale Follow-up Study. International Journal of Cardiology, 2018. 264: p. 172-178. https://www.sciencedirect.com/science/article/pii/S0167527317378841

89. Castañer, O., et al., Remnant Cholesterol, Not LDL Cholesterol, Is Associated With Incident Cardiovascular Disease. Journal of the American College of Cardiology, 2020. 76(23): p. 2712-2724. https://www.sciencedirect.com/science/article/pii/S0735109720374684

90. Ellison, S., et al., Novel plasma biomarkers improve discrimination of metabolic health independent of weight. Scientific Reports, 2020. 10(1): p. 21365. https://doi.org/10.1038/s41598-020-78478-w

91. Hoogeveen, R.C., et al., Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler Thromb Vasc Biol, 2014. 34(5): p. 1069-77. https://pubmed.ncbi.nlm.nih.gov/24558110/

92. Bertsch, R.A. and M.A. Merchant, Study of the Use of Lipid Panels as a Marker of Insulin Resistance to Determine Cardiovascular Risk. Perm J, 2015. 19(4): p. 4-10. https://pubmed.ncbi.nlm.nih.gov/26517432/

93. Aday, A.W., et al., Lipoprotein Particle Profiles, Standard Lipids, and Peripheral Artery Disease Incidence. Circulation, 2018. 138(21): p. 2330-2341. https://pubmed.ncbi.nlm.nih.gov/30021845/

94. Higashioka, M., et al., Small Dense Low-Density Lipoprotein Cholesterol and the Risk of Coronary Heart Disease in a Japanese Community. J Atheroscler Thromb, 2020. 27(7): p. 669-682. https://pubmed.ncbi.nlm.nih.gov/31708527/

95. Bonilha, I., et al., The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites, 2021. 11(12). https://pubmed.ncbi.nlm.nih.gov/34940565/

96. Wu, D., et al., Low-Density Lipoprotein Cholesterol 4: The Notable Risk Factor of Coronary Artery Disease Development. Front Cardiovasc Med, 2021. 8: p. 619386. https://pubmed.ncbi.nlm.nih.gov/33937355/

97. Austin, M.A., et al., Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation, 1990. 82(2): p. 495-506. https://pubmed.ncbi.nlm.nih.gov/2372896/

98. King, R.I., et al., What is the best predictor of the atherogenic LDL subclass phenotype 'pattern B' in patients with type 2 diabetes mellitus? Ann Clin Biochem, 2011. 48(Pt 2): p. 166-9. https://pubmed.ncbi.nlm.nih.gov/21278248/

99. Superko, H. and B. Garrett, Small Dense LDL: Scientific Background, Clinical Relevance, and Recent Evidence Still a Risk Even with 'Normal' LDL-C Levels. Biomedicines, 2022. 10(4). https://pubmed.ncbi.nlm.nih.gov/35453579/

100. You, W., et al., Total Meat Intake is Associated with Life Expectancy: A Cross-Sectional Data Analysis of 175 Contemporary Populations. Int J Gen Med, 2022. 15: p. 1833-1851. https://pubmed.ncbi.nlm.nih.gov/35228814/

101. Magkos, F., et al., The Environmental Foodprint of Obesity. Obesity (Silver Spring), 2020. 28(1): p. 73-79. https://pubmed.ncbi.nlm.nih.gov/31858737/