Posts in vlogs
Out for Blood first ascent

I managed to lead the Gorge Crag project in Glen Nevis. I’d seen this line years ago but various things put me off trying it earlier. It’s in the sun too much in summer, seeps a bit in winter, top pitch seemed to have no holds etc… But Julian Lines encouraged me to get on it. As always with projects, once you start…

How to gain confidence as a trad leader

In the spring, we have to get our leading head back on. Depending on how you choose your routes, mileage can either train or detrain your confidence. In this video, I take you through how I choose climbs that get me ready for bigger leads as the season progresses.

You may not even know this is holding back your climbing

Many climbers are unaware just how much their ability to swap feet efficiently is holding them back. Poor technique tends to make climbers search for alternatives, which usually make climbs a lot harder. In this video I go through the handful of things you need to know to swap feet accurately and extremely consistently.

The Patties diet

What is it specifically about the western diet that is unhealthy? Is it the meat? As many of you will have gathered, this a question I have become interested in over recent years. I have watched many friends, family and others suffer with the countless manifestations of diet related disease and our entire health service is in the process of being crushed by it. So it is important to me.

The more I have looked at the evidence, the less I am convinced that meat is playing a causative role in this process and the more I think that its restriction may make things worse. To shed some light on this, I went to the epitome of junk food, McDonald’s, and ate nothing but their burger patties for two months.

It was a way to draw attention to the need to think a bit more carefully about what is in our food and which parts of it are beneficial, harmful or neutral.

Below is a list of references from the video.

1. Lane, M.M., et al., Ultra-Processed Food Consumption and Mental Health: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients, 2022. 14(13). https://pubmed.ncbi.nlm.nih.gov/35807749/

2. Godos, J., et al. Ultra-Processed Food Consumption and Depressive Symptoms in a Mediterranean Cohort. Nutrients, 2023. 15,  DOI: 10.3390/nu15030504. https://pubmed.ncbi.nlm.nih.gov/36771211/

3. Maffetone, P.B. and P.B. Laursen, The Prevalence of Overfat Adults and Children in the US. Frontiers in Public Health, 2017. 5(290). https://www.frontiersin.org/article/10.3389/fpubh.2017.00290

4. Araújo, J., J. Cai, and J. Stevens, Prevalence of Optimal Metabolic Health in American Adults: National Health and Nutrition Examination Survey 2009–2016. Metabolic Syndrome and Related Disorders, 2018. 17(1): p. 46-52. https://doi.org/10.1089/met.2018.0105

5. O’Hearn, M., et al., Trends and Disparities in Cardiometabolic Health Among U.S. Adults, 1999-2018. Journal of the American College of Cardiology, 2022. 80(2): p. 138-151. https://www.sciencedirect.com/science/article/pii/S0735109722049944

6. Leroy, F., et al., Animal board invited review: Animal source foods in healthy, sustainable, and ethical diets - An argument against drastic limitation of livestock in the food system. Animal, 2022. 16(3): p. 100457. https://pubmed.ncbi.nlm.nih.gov/35158307/

7. Lescinsky, H., et al., Health effects associated with consumption of unprocessed red meat: a Burden of Proof study. Nature Medicine, 2022. 28(10): p. 2075-2082. https://doi.org/10.1038/s41591-022-01968-z

8. Grosso, G., et al., Health risk factors associated with meat, fruit and vegetable consumption in cohort studies: A comprehensive meta-analysis. PLOS ONE, 2017. 12(8): p. e0183787. https://doi.org/10.1371/journal.pone.0183787

9. Lee, J.E., et al., Meat intake and cause-specific mortality: a pooled analysis of Asian prospective cohort studies. The American Journal of Clinical Nutrition, 2013. 98(4): p. 1032-1041. https://doi.org/10.3945/ajcn.113.062638

10. Grasgruber, P., et al., Food consumption and the actual statistics of cardiovascular diseases: an epidemiological comparison of 42 European countries. Food & nutrition research, 2016. 60: p. 31694-31694. https://pubmed.ncbi.nlm.nih.gov/27680091

11. Park, K., et al., Unprocessed Meat Consumption and Incident Cardiovascular Diseases in Korean Adults: The Korean Genome and Epidemiology Study (KoGES). Nutrients, 2017. 9(5): p. 498. https://www.ncbi.nlm.nih.gov/pubmed/28505126

12. Grasgruber, P., et al., Global Correlates of Cardiovascular Risk: A Comparison of 158 Countries. Nutrients, 2018. 10(4). http://www.mdpi.com/2072-6643/10/4/411/pdf

13. Maximova, K., et al., Co-consumption of Vegetables and Fruit, Whole Grains, and Fiber Reduces the Cancer Risk of Red and Processed Meat in a Large Prospective Cohort of Adults from Alberta’s Tomorrow Project. Nutrients, 2020. 12(8). https://pubmed.ncbi.nlm.nih.gov/32751091/

14. Petermann-Rocha, F., et al., Do all vegetarians have a lower cardiovascular risk? A prospective study. Clinical Nutrition, 2023. 42(3): p. 269-276. https://doi.org/10.1016/j.clnu.2023.01.010

15. Bouvard, V., et al., Carcinogenicity of consumption of red and processed meat. The Lancet Oncology, 2015. 16(16): p. 1599-1600. https://doi.org/10.1016/S1470-2045(15)00444-1

16. IARC, Red meat and processed meat volume 114; IARC monographs on the evaluation of carcinogenic risks to humans. 2018: IARC. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Red-Meat-And-Processed-Meat-2018

17. Singh, P.N. and G.E. Fraser, Dietary Risk Factors for Colon Cancer in a Low-risk Population. American Journal of Epidemiology, 1998. 148(8): p. 761-774. https://doi.org/10.1093/oxfordjournals.aje.a009697

18. Hur, S.J., et al., Controversy on the correlation of red and processed meat consumption with colorectal cancer risk: an Asian perspective. Crit Rev Food Sci Nutr, 2019. 59(21): p. 3526-3537. https://pubmed.ncbi.nlm.nih.gov/29999423/

19. Zheng, C., et al., Biomarker-Calibrated Red and Combined Red and Processed Meat Intakes with Chronic Disease Risk in a Cohort of Postmenopausal Women. The Journal of Nutrition, 2022. 152(7): p. 1711-1720. https://doi.org/10.1093/jn/nxac067

20. Feng, Q., et al., Raw and Cooked Vegetable Consumption and Risk of Cardiovascular Disease: A Study of 400,000 Adults in UK Biobank. Frontiers in Nutrition, 2022. 9. https://www.frontiersin.org/articles/10.3389/fnut.2022.831470

21. Allen, M.R., et al., A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. npj Climate and Atmospheric Science, 2018. 1(1): p. 16. https://doi.org/10.1038/s41612-018-0026-8

22. Stanley, P.L., et al., Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agricultural Systems, 2018. 162: p. 249-258. http://www.sciencedirect.com/science/article/pii/S0308521X17310338

23. Cain, M., et al., Improved calculation of warming-equivalent emissions for short-lived climate pollutants. npj Climate and Atmospheric Science, 2019. 2(1): p. 29. https://doi.org/10.1038/s41612-019-0086-4

24. Lynch, J.M., et al., Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environmental Research Letters, 2020. http://iopscience.iop.org/10.1088/1748-9326/ab6d7e

25. Bai, Y. and M.F. Cotrufo, Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, 2022. 377(6606): p. 603-608. https://doi.org/10.1126/science.abo2380

26. Johnson, D.C., et al., Adaptive multi-paddock grazing management's influence on soil food web community structure for: increasing pasture forage production, soil organic carbon, and reducing soil respiration rates in southeastern USA ranches. PeerJ, 2022. 10: p. e13750. https://pubmed.ncbi.nlm.nih.gov/35873909/

27. Maestre, F.T., et al., Grazing and ecosystem service delivery in global drylands. Science, 2022. 378(6622): p. 915-920. https://doi.org/10.1126/science.abq4062

28. Naidu, D.G.T., S. Roy, and S. Bagchi, Loss of grazing by large mammalian herbivores can destabilize the soil carbon pool. Proceedings of the National Academy of Sciences, 2022. 119(43): p. e2211317119. https://doi.org/10.1073/pnas.2211317119

29. Norton, L.R., et al., Can pasture-fed livestock farming practices improve the ecological condition of grassland in Great Britain? Ecological Solutions and Evidence, 2022. 3(4): p. e12191. https://doi.org/10.1002/2688-8319.12191

30. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G, Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. 2013: R. Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/3/i3437e/i3437e.pdf

31. Adesogan, A.T., et al., Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. Global Food Security, 2019: p. 100325. http://www.sciencedirect.com/science/article/pii/S2211912419300525

32. Kronberg, S.L., et al., Review: Closing nutrient cycles for animal production – Current and future agroecological and socio-economic issues. Animal, 2021. 15: p. 100285. https://www.sciencedirect.com/science/article/pii/S1751731121001282

33. Clark, M. and D. Tilman, Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 2017. 12(6): p. 064016. https://dx.doi.org/10.1088/1748-9326/aa6cd5

34. Poore, J. and T. Nemecek, Reducing food's environmental impacts through producers and consumers. Science, 2018. 360(6392): p. 987-992. https://pubmed.ncbi.nlm.nih.gov/29853680/

35. O’Malley, K., A. Willits-Smith, and D. Rose, Popular diets as selected by adults in the United States show wide variation in carbon footprints and diet quality. The American Journal of Clinical Nutrition, 2023. https://www.sciencedirect.com/science/article/pii/S0002916523005117

36. Nordhagen, S.B., T, Haddad, L., The role of animal source foods in healthy, sustainable and equitable food systems. Discussion Paper Series 5. 2020, Geneva, Switzerland: G.A.f.I.N. (GAIN). https://www.gainhealth.org/resources/reports-and-publications/gain-discussion-paper-series-5-role-animal-source-foods-healthy-sustainable-equitable-food-systems

37. Beal, T., et al., Friend or Foe? The Role of Animal-Source Foods in Healthy and Environmentally Sustainable Diets. The Journal of Nutrition, 2023. 153(2): p. 409-425. https://www.sciencedirect.com/science/article/pii/S0022316622131378

38. Beal, T., F. Ortenzi, and J. Fanzo, Estimated micronutrient shortfalls of the EAT&#x2013;<em>Lancet</em> planetary health diet. The Lancet Planetary Health, 2023. 7(3): p. e233-e237. https://doi.org/10.1016/S2542-5196(23)00006-2

39. McAuliffe, G.A., et al., Protein quality as a complementary functional unit in life cycle assessment (LCA). The International Journal of Life Cycle Assessment, 2023. 28(2): p. 146-155. https://doi.org/10.1007/s11367-022-02123-z

40. Agency, E.E., Soil Carbon. 2022: E.E. Agency. https://www.eea.europa.eu/publications/soil-carbon

41. Rayne, N. and L. Aula Livestock Manure and the Impacts on Soil Health: A Review. Soil Systems, 2020. 4,  DOI: 10.3390/soilsystems4040064. https://www.mdpi.com/2571-8789/4/4/64

42. Rui, Y., et al., Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proceedings of the National Academy of Sciences, 2022. 119(7): p. e2118931119. https://doi.org/10.1073/pnas.2118931119

43. Geiger, F., et al., Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 2010. 11(2): p. 97-105. https://www.sciencedirect.com/science/article/pii/S1439179109001388

44. Rabalais, N.N., R.E. Turner, and W.J. Wiseman, Gulf of Mexico Hypoxia, A.K.A. “The Dead Zone”. Annual Review of Ecology and Systematics, 2002. 33(1): p. 235-263. https://doi.org/10.1146/annurev.ecolsys.33.010802.150513

45. Ben-Dor, M., R. Sirtoli, and R. Barkai, The evolution of the human trophic level during the Pleistocene. Am J Phys Anthropol, 2021. 175 Suppl 72: p. 27-56. https://pubmed.ncbi.nlm.nih.gov/33675083/

46. Carriedo, A., et al., The corporate capture of the nutrition profession in the USA: the case of the Academy of Nutrition and Dietetics. Public Health Nutr, 2022: p. 1-15. https://www.cambridge.org/core/journals/public-health-nutrition/article/corporate-capture-of-the-nutrition-profession-in-the-usa-the-case-of-the-academy-of-nutrition-and-dietetics/9FCF66087DFD5661DF1AF2AD54DA0DF9

47. M, S.D., et al., Consumption of meat, traditional and modern processed meat and colorectal cancer risk among the Moroccan population: A large-scale case-control study. Int J Cancer, 2020. 146(5): p. 1333-1345. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.32689?download=true

48. Murphy, S.P. and L.H. Allen, Nutritional importance of animal source foods. J Nutr, 2003. 133(11 Suppl 2): p. 3932s-3935s. https://pubmed.ncbi.nlm.nih.gov/14672292/

49. O'Hearn, A., Can a carnivore diet provide all essential nutrients? Curr Opin Endocrinol Diabetes Obes, 2020. 27(5): p. 312-316. https://pubmed.ncbi.nlm.nih.gov/32833688/

50. McClellan, W.S. and E.F. Du Bois, CLINICAL CALORIMETRY: XLV. PROLONGED MEAT DIETS WITH A STUDY OF KIDNEY FUNCTION AND KETOSIS. Journal of Biological Chemistry, 1930. 87(3): p. 651-668. https://www.sciencedirect.com/science/article/pii/S0021925818768427

51. Thorpe, G.L., TREATING OVERWEIGHT PATIENTS. Journal of the American Medical Association, 1957. 165(11): p. 1361-1365. https://doi.org/10.1001/jama.1957.02980290001001

52. Lennerz, B.S., et al., Behavioral Characteristics and Self-Reported Health Status among 2029 Adults Consuming a "Carnivore Diet". Curr Dev Nutr, 2021. 5(12): p. nzab133. https://pubmed.ncbi.nlm.nih.gov/34934897/

53. Brietzke, E., et al., Ketogenic diet as a metabolic therapy for mood disorders: Evidence and developments. Neurosci Biobehav Rev, 2018. 94: p. 11-16. https://www.sciencedirect.com/science/article/abs/pii/S0149763418303762

54. Danan, A., et al., The Ketogenic Diet for Refractory Mental Illness: A Retrospective Analysis of 31 Inpatients. Frontiers in Psychiatry, 2022. 13. https://www.frontiersin.org/articles/10.3389/fpsyt.2022.951376

55. Norwitz, N.G., et al., Elevated LDL Cholesterol with a Carbohydrate-Restricted Diet: Evidence for a “Lean Mass Hyper-Responder” Phenotype. Current Developments in Nutrition, 2022. 6(1): p. nzab144. https://doi.org/10.1093/cdn/nzab144

56. Norwitz, N.G., et al. The Lipid Energy Model: Reimagining Lipoprotein Function in the Context of Carbohydrate-Restricted Diets. Metabolites, 2022. 12,  DOI: 10.3390/metabo12050460. https://pubmed.ncbi.nlm.nih.gov/35629964/

57. Després, J.-P., et al., Hyperinsulinemia as an Independent Risk Factor for Ischemic Heart Disease. New England Journal of Medicine, 1996. 334(15): p. 952-958. https://doi.org/10.1056/NEJM199604113341504

58. Ballantyne Christie, M., et al., Influence of Low High-Density Lipoprotein Cholesterol and Elevated Triglyceride on Coronary Heart Disease Events and Response to Simvastatin Therapy in 4S. Circulation, 2001. 104(25): p. 3046-3051. https://doi.org/10.1161/hc5001.100624

59. Kawamoto, R., et al., Low density lipoprotein cholesterol and all-cause mortality rate: findings from a study on Japanese community-dwelling persons. Lipids in Health and Disease, 2021. 20(1): p. 105. https://doi.org/10.1186/s12944-021-01533-6

60. Georgoulis, M., et al., Long-term prognostic value of LDL-C, HDL-C, lp(a) and TG levels on cardiovascular disease incidence, by body weight status, dietary habits and lipid-lowering treatment: the ATTICA epidemiological cohort study (2002–2012). Lipids in Health and Disease, 2022. 21(1): p. 141. https://doi.org/10.1186/s12944-022-01747-2

61. Rong, S., et al., Association of Low‐Density Lipoprotein Cholesterol Levels with More than 20‐Year Risk of Cardiovascular and All‐Cause Mortality in the General Population. Journal of the American Heart Association, 2022. 11(15): p. e023690. https://doi.org/10.1161/JAHA.121.023690

62. Yi, S.W., et al., Association between low-density lipoprotein cholesterol and cardiovascular mortality in statin non-users: a prospective cohort study in 14.9 million Korean adults. Int J Epidemiol, 2022. 51(4): p. 1178-1189. https://pubmed.ncbi.nlm.nih.gov/35218344/

63. Ennezat, P.V., et al., Extent of Low-density Lipoprotein Cholesterol Reduction and All-cause and Cardiovascular Mortality Benefit: A Systematic Review and Meta-analysis. Journal of Cardiovascular Pharmacology, 2023. 81(1). https://journals.lww.com/cardiovascularpharm/Fulltext/2023/01000/Extent_of_Low_density_Lipoprotein_Cholesterol.6.aspx

64. Madsen, C.M., A. Varbo, and B.G. Nordestgaard, Low HDL Cholesterol and High Risk of Autoimmune Disease: Two Population-Based Cohort Studies Including 117341 Individuals. Clin Chem, 2019. 65(5): p. 644-652. https://pubmed.ncbi.nlm.nih.gov/30745290/

65. Mørland, J.G., et al., Associations between serum high-density lipoprotein cholesterol levels and cause-specific mortality in a general population of 345 000 men and women aged 20–79 years. International Journal of Epidemiology, 2023: p. dyad011. https://doi.org/10.1093/ije/dyad011

66. Yokoyama, Y., S.M. Levin, and N.D. Barnard, Association between plant-based diets and plasma lipids: a systematic review and meta-analysis. Nutr Rev, 2017. 75(9): p. 683-698. https://pubmed.ncbi.nlm.nih.gov/28938794/

67. Gaziano, J.M., et al., Fasting triglycerides, high-density lipoprotein, and risk of myocardial infarction. Circulation, 1997. 96(8): p. 2520-5. https://pubmed.ncbi.nlm.nih.gov/9355888/

68. Jeppesen, J., et al., Low triglycerides-high high-density lipoprotein cholesterol and risk of ischemic heart disease. Arch Intern Med, 2001. 161(3): p. 361-6. https://pubmed.ncbi.nlm.nih.gov/11176761/

69. Shishehbor, M.H., B.J. Hoogwerf, and M.S. Lauer, Association of triglyceride-to-HDL cholesterol ratio with heart rate recovery. Diabetes Care, 2004. 27(4): p. 936-41. https://pubmed.ncbi.nlm.nih.gov/15047652/

70. Luz, P.L.d., et al., High ratio of triglycerides to hdl-cholesterol predicts extensive coronary disease. Clinics, 2008. 63. https://europepmc.org/article/MED/18719750

71. Vega, G.L., et al., Triglyceride–to–High-Density-Lipoprotein-Cholesterol Ratio is an Index of Heart Disease Mortality and of Incidence of Type 2 Diabetes Mellitus in Men. Journal of Investigative Medicine, 2014. 62(2): p. 345-349. https://doi.org/10.2310/JIM.0000000000000044

72. Li, H.Y., et al., Optimal cutoff of the triglyceride to high-density lipoprotein cholesterol  ratio to detect cardiovascular risk factors among Han adults in Xinjiang. J Health Popul Nutr, 2016. 35(1): p. 30. https://pubmed.ncbi.nlm.nih.gov/27586369/

73. Caporaso, N.E., et al., Insulin Resistance in Healthy U.S. Adults: Findings from the National Health and Nutrition Examination Survey (NHANES). Cancer Epidemiology, Biomarkers & Prevention, 2020. 29(1): p. 157-168. https://doi.org/10.1158/1055-9965.EPI-19-0206

74. Caselli, C., et al., Triglycerides and low HDL cholesterol predict coronary heart disease risk in patients with stable angina. Scientific Reports, 2021. 11(1): p. 20714. https://doi.org/10.1038/s41598-021-00020-3

75. Catanzaro, R., et al., Triglycerides to high-density lipoprotein cholesterol ratio for diagnosing nonalcoholic fatty liver disease. Minerva Gastroenterol (Torino), 2022. 68(3): p. 261-268. https://pubmed.ncbi.nlm.nih.gov/33829728/

76. Widmer, A., M.G. Mercante, and H.J. Silver TG/HDL Ratio Is an Independent Predictor for Estimating Resting Energy Expenditure in Adults with Normal Weight, Overweight, and Obesity. Nutrients, 2022. 14,  DOI: 10.3390/nu14235106. https://pubmed.ncbi.nlm.nih.gov/36501139/

77. Kosmas, C.E., et al., The Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio as a Risk Marker for Metabolic Syndrome and Cardiovascular Disease. Diagnostics (Basel), 2023. 13(5). https://pubmed.ncbi.nlm.nih.gov/36900073/

78. Boizel, R., et al., Ratio of triglycerides to HDL cholesterol is an indicator of LDL particle size in patients with type 2 diabetes and normal HDL cholesterol levels. Diabetes Care, 2000. 23(11): p. 1679-85. https://pubmed.ncbi.nlm.nih.gov/11092292/

79. Cromwell, W.C. and J.D. Otvos, Low-density lipoprotein particle number and risk for cardiovascular disease. Curr Atheroscler Rep, 2004. 6(5): p. 381-7. https://pubmed.ncbi.nlm.nih.gov/15296705/

80. McLaughlin, T., et al., Is There a Simple Way to Identify Insulin-Resistant Individuals at Increased Risk of Cardiovascular Disease? The American Journal of Cardiology, 2005. 96(3): p. 399-404. https://www.sciencedirect.com/science/article/pii/S0002914905007411

81. Quispe, R., et al., Relationship of the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to the remainder of the lipid profile: The Very Large Database of Lipids-4 (VLDL-4) study. Atherosclerosis, 2015. 242(1): p. 243-50. https://pubmed.ncbi.nlm.nih.gov/26232164/

82. Borrayo, G., et al., TG/HDL-C RATIO AS CARDIO-METABOLIC BIOMARKER EVEN IN NORMAL WEIGHT WOMEN. Acta Endocrinol (Buchar), 2018. 14(2): p. 261-267. https://pubmed.ncbi.nlm.nih.gov/31149268/

83. Räihä, I., et al., Effect of serum lipids, lipoproteins, and apolipoproteins on vascular and nonvascular mortality in the elderly. Arterioscler Thromb Vasc Biol, 1997. 17(7): p. 1224-32. https://pubmed.ncbi.nlm.nih.gov/9261250/

84. Panagiotakos, D.B., et al., Importance of LDL/HDL cholesterol ratio as a predictor for coronary heart disease events in patients with heterozygous familial hypercholesterolaemia: a 15-year follow-up (1987-2002). Curr Med Res Opin, 2003. 19(2): p. 89-94. https://pubmed.ncbi.nlm.nih.gov/12755140/

85. Shai, I., et al., Multivariate assessment of lipid parameters as predictors of coronary heart disease among postmenopausal women: potential implications for clinical guidelines. Circulation, 2004. 110(18): p. 2824-30. https://pubmed.ncbi.nlm.nih.gov/15492318/

86. Mora, S., et al., Atherogenic Lipoprotein Subfractions Determined by Ion Mobility and First Cardiovascular Events After Random Allocation to High-Intensity Statin or Placebo: The Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) Trial. Circulation, 2015. 132(23): p. 2220-9. https://pubmed.ncbi.nlm.nih.gov/26408274/

87. Katzke, V.A., et al., Blood lipids and lipoproteins in relation to incidence and mortality risks for CVD and cancer in the prospective EPIC–Heidelberg cohort. BMC Medicine, 2017. 15(1): p. 218. https://doi.org/10.1186/s12916-017-0976-4

88. Pichler, G., et al., LDL particle size and composition and incident cardiovascular disease in a South-European population: The Hortega-Liposcale Follow-up Study. International Journal of Cardiology, 2018. 264: p. 172-178. https://www.sciencedirect.com/science/article/pii/S0167527317378841

89. Castañer, O., et al., Remnant Cholesterol, Not LDL Cholesterol, Is Associated With Incident Cardiovascular Disease. Journal of the American College of Cardiology, 2020. 76(23): p. 2712-2724. https://www.sciencedirect.com/science/article/pii/S0735109720374684

90. Ellison, S., et al., Novel plasma biomarkers improve discrimination of metabolic health independent of weight. Scientific Reports, 2020. 10(1): p. 21365. https://doi.org/10.1038/s41598-020-78478-w

91. Hoogeveen, R.C., et al., Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler Thromb Vasc Biol, 2014. 34(5): p. 1069-77. https://pubmed.ncbi.nlm.nih.gov/24558110/

92. Bertsch, R.A. and M.A. Merchant, Study of the Use of Lipid Panels as a Marker of Insulin Resistance to Determine Cardiovascular Risk. Perm J, 2015. 19(4): p. 4-10. https://pubmed.ncbi.nlm.nih.gov/26517432/

93. Aday, A.W., et al., Lipoprotein Particle Profiles, Standard Lipids, and Peripheral Artery Disease Incidence. Circulation, 2018. 138(21): p. 2330-2341. https://pubmed.ncbi.nlm.nih.gov/30021845/

94. Higashioka, M., et al., Small Dense Low-Density Lipoprotein Cholesterol and the Risk of Coronary Heart Disease in a Japanese Community. J Atheroscler Thromb, 2020. 27(7): p. 669-682. https://pubmed.ncbi.nlm.nih.gov/31708527/

95. Bonilha, I., et al., The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites, 2021. 11(12). https://pubmed.ncbi.nlm.nih.gov/34940565/

96. Wu, D., et al., Low-Density Lipoprotein Cholesterol 4: The Notable Risk Factor of Coronary Artery Disease Development. Front Cardiovasc Med, 2021. 8: p. 619386. https://pubmed.ncbi.nlm.nih.gov/33937355/

97. Austin, M.A., et al., Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation, 1990. 82(2): p. 495-506. https://pubmed.ncbi.nlm.nih.gov/2372896/

98. King, R.I., et al., What is the best predictor of the atherogenic LDL subclass phenotype 'pattern B' in patients with type 2 diabetes mellitus? Ann Clin Biochem, 2011. 48(Pt 2): p. 166-9. https://pubmed.ncbi.nlm.nih.gov/21278248/

99. Superko, H. and B. Garrett, Small Dense LDL: Scientific Background, Clinical Relevance, and Recent Evidence Still a Risk Even with 'Normal' LDL-C Levels. Biomedicines, 2022. 10(4). https://pubmed.ncbi.nlm.nih.gov/35453579/

100. You, W., et al., Total Meat Intake is Associated with Life Expectancy: A Cross-Sectional Data Analysis of 175 Contemporary Populations. Int J Gen Med, 2022. 15: p. 1833-1851. https://pubmed.ncbi.nlm.nih.gov/35228814/

101. Magkos, F., et al., The Environmental Foodprint of Obesity. Obesity (Silver Spring), 2020. 28(1): p. 73-79. https://pubmed.ncbi.nlm.nih.gov/31858737/

Agag's Groove free solo with Kev Shields

The other day myself and Kev Shields went for a morning’s solo on Buachaille Etive Mor in Glen Coe. We climbed an easy classic, Agag’s Groove, that is a first mountain route for many new climbers. I decided to take a few cameras and film the climb. Soloing and filming at the same time is not all that easy. But its nice to show off the route and I hope it encourages more folk to go and climb mountain routes like this.

Can you quantify climbing technique?

Coaches and sport scientists are often trying to quantify aspects of sport and there’s good reasons for this. But climbing technique is hopelessly complex with endless variation in movement. How could we go about quantifying it, or even thinking about it in any kind of structured manner? With difficulty. In this video I introduce some simple ideas for the way I think about technique that helps me to learn it and monitor my learning.

How strong am I really?

Maddy and Ollie at Lattice Training recently invited me to their HQ in Chesterfield for their finger strength and endurance testing protocol. It was fun and interesting to see how I compare to their ever growing database of high level climbers for these basic measures of strength and endurance. As you can see in the video, it yielded a couple of surprising results for me and a little food for thought for my general approach to climbing goals in the future.

The ketogenic diet in sport performance - 6 years of experiments and scientific evidence

The ketogenic diet had a large impact on my life and my climbing. Here is a detailed discussion of 6 years of my own experiences with the keto diet for sport performance as a pro rock climber, with references to 150 scientific papers on the performance, health and other effects of the diet. You can find all the references below.

I’ve also published an audio version of the piece on my Patreon page as a thanks to my Patreon supporters. I thought that might be useful for folk to listen to it on the move since it’s a long and detailed piece.

Bibliography

1. Hyppönen, E. and C. Power, Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. The American Journal of Clinical Nutrition, 2007. 85(3): p. 860-868. https://doi.org/10.1093/ajcn/85.3.860

2. Nixon, R., Comparisons of aspects of Glasgow’s 56 neighbourhoods. 2016: G.C.f.P. Health. https://www.gcph.co.uk/assets/0000/5492/Comparisons_of_aspects_of_Glasgows_56_neighbourhoods.pdf

3. Price, W.A., Nutrition and physical degeneration. 1998, New Canaan, Conn.: Keats. https://amzn.to/39gxhkG

4. Weiser, M.J., C.M. Butt, and M.H. Mohajeri, Docosahexaenoic Acid and Cognition throughout the Lifespan.Nutrients, 2016. 8(2): p. 99-99. https://pubmed.ncbi.nlm.nih.gov/26901223

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772061/

5. Careau, V., et al., Energy compensation and adiposity in humans. Current Biology. https://doi.org/10.1016/j.cub.2021.08.016

6. Pontzer, H., et al., Hunter-gatherer energetics and human obesity. PloS one, 2012. 7(7): p. e40503-e40503. https://pubmed.ncbi.nlm.nih.gov/22848382

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405064/

7. Pontzer, H., et al., Energy expenditure and activity among Hadza hunter-gatherers. Am J Hum Biol, 2015. 27(5): p. 628-37. https://pubmed.ncbi.nlm.nih.gov/25824106/

8. Pontzer, H., et al., Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans. Curr Biol, 2016. 26(3): p. 410-7. https://pubmed.ncbi.nlm.nih.gov/26832439/

9. Pontzer, H., B.M. Wood, and D.A. Raichlen, Hunter-gatherers as models in public health. Obes Rev, 2018. 19 Suppl 1: p. 24-35. https://pubmed.ncbi.nlm.nih.gov/30511505/

10. Cowley, J., J. Kiely, and D. Collins, Unravelling the Glasgow effect: The relationship between accumulative bio- psychosocial stress, stress reactivity and Scotland's health problems. Preventive medicine reports, 2016. 4: p. 370-375. https://pubmed.ncbi.nlm.nih.gov/27512652

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979043/

11. Alvheim, A.R., et al., Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity.Obesity (Silver Spring), 2012. 20(10): p. 1984-94. https://pubmed.ncbi.nlm.nih.gov/22334255/

12. Naughton, S.S., et al., Fatty Acid modulation of the endocannabinoid system and the effect on food intake and metabolism. Int J Endocrinol, 2013. 2013: p. 361895. https://doi.org/10.1155/2013/361895

13. Naughton, S.S., et al., The Acute Effect of Oleic- or Linoleic Acid-Containing Meals on Appetite and Metabolic Markers; A Pilot Study in Overweight or Obese Individuals. Nutrients, 2018. 10(10): p. 1376. https://www.ncbi.nlm.nih.gov/pubmed/30261617

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213143/

14. Clark, T.M., et al., Theoretical Explanation for Reduced Body Mass Index and Obesity Rates in Cannabis Users.Cannabis and cannabinoid research, 2018. 3(1): p. 259-271. https://www.ncbi.nlm.nih.gov/pubmed/30671538

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6340377/

15. Deol, P., et al., Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver. PLOS ONE, 2015. 10(7): p. e0132672. https://doi.org/10.1371/journal.pone.0132672

16. Deol, P., et al., Dysregulation of Hypothalamic Gene Expression and the Oxytocinergic System by Soybean Oil Diets in Male Mice. Endocrinology, 2020. https://doi.org/10.1210/endocr/bqz044

17. Benani, A., et al., Role for Mitochondrial Reactive Oxygen Species in Brain Lipid Sensing. Diabetes, 2007. 56(1): p. 152. http://diabetes.diabetesjournals.org/content/56/1/152.abstract

18. López, S., et al., Distinctive postprandial modulation of β cell function and insulin sensitivity by dietary fats: monounsaturated compared with saturated fatty acids. The American Journal of Clinical Nutrition, 2008. 88(3): p. 638-644. https://doi.org/10.1093/ajcn/88.3.638

19. Harvey, C.J.d.C., et al., Effects of differing levels of carbohydrate restriction on the achievement of nutritional ketosis, mood, and symptoms of carbohydrate withdrawal in healthy adults: A randomized clinical trial. Nutrition: X, 2019: p. 100005. http://www.sciencedirect.com/science/article/pii/S2665902619300056

20. Stellingwerff, T., Case Study: Body Composition Periodization in an Olympic-Level Female Middle-Distance Runner Over a 9-Year Career. Int J Sport Nutr Exerc Metab, 2018. 28(4): p. 428-433. https://pubmed.ncbi.nlm.nih.gov/29140157/

21. Holt, S.H.A., et al., A Satiety Index of common foods. European journal of clinical nutrition, 1995. 49: p. 675-90. https://pubmed.ncbi.nlm.nih.gov/7498104/

22. Edwards, K.H., B.T. Elliott, and C.M. Kitic, Carbohydrate intake and ketosis in self-sufficient multi-stage ultramarathon runners. J Sports Sci, 2020. 38(4): p. 366-374. https://pubmed.ncbi.nlm.nih.gov/31835963/

23. Baar, K. and T. Stellingwerff, Maximising power to weight ratio. Peak Performance, 2015(337): p. 1-5. https://fliphtml5.com/mrom/hiie/basic

24. Koutnik, A., D. D'Agostino, and B. Egan, Anticatabolic Effects of Ketone Bodies in Skeletal Muscle. Trends in Endocrinology and Metabolism, 2019. 30: p. 227-229. https://pubmed.ncbi.nlm.nih.gov/30712977/

25. Paoli, A., et al., Ketogenic Diet and Skeletal Muscle Hypertrophy: A Frenemy Relationship? Journal of human kinetics, 2019. 68: p. 233-247. https://pubmed.ncbi.nlm.nih.gov/31531148

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724590/

26. Impey, S.G., et al., Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis. Sports Med, 2018. 48(5): p. 1031-1048. https://pubmed.ncbi.nlm.nih.gov/29453741/

27. Wallace, I.J., et al., Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proceedings of the National Academy of Sciences, 2017. 114(35): p. 9332. http://www.pnas.org/content/114/35/9332.abstract

28. Goldberg, E.L., et al., Ketogenic diet activates protective γδ T cell responses against influenza virus infection.Science Immunology, 2019. 4(41): p. eaav2026. http://immunology.sciencemag.org/content/4/41/eaav2026.abstract

29. Pardo, A.C., Ketogenic Diet: A Role in Immunity? Pediatr Neurol Briefs, 2020. 34: p. 5. https://pubmed.ncbi.nlm.nih.gov/32174748/

30. Entrenas Castillo, M., et al., “Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study”. The Journal of Steroid Biochemistry and Molecular Biology, 2020. 203: p. 105751. https://www.sciencedirect.com/science/article/pii/S0960076020302764

31. Antonio, J., et al., The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. J Int Soc Sports Nutr, 2014. 11: p. 19. http://www.ncbi.nlm.nih.gov/pubmed/24834017

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022420/pdf/1550-2783-11-19.pdf

32. Berrazaga, I., et al., The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients, 2019. 11(8). 

33. Carmen, M., et al., Treating binge eating and food addiction symptoms with low-carbohydrate Ketogenic diets: a case series. Journal of Eating Disorders, 2020. 8(1): p. 2. https://doi.org/10.1186/s40337-020-0278-7

34. SACN, Saturated Fats and Health. 2019: SACN. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/814995/SACN_report_on_saturated_fat_and_health.pdf

35. Ness, A.R., et al., Diet in childhood and adult cardiovascular and all cause mortality: the Boyd Orr cohort. Heart, 2005. 91(7): p. 894-8. https://pubmed.ncbi.nlm.nih.gov/15958357/

36. Mente, A., et al., A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med, 2009. 169(7): p. 659-69. https://pubmed.ncbi.nlm.nih.gov/19364995/

37. Skeaff, C.M. and J. Miller, Dietary fat and coronary heart disease: summary of evidence from prospective cohort and randomised controlled trials. Ann Nutr Metab, 2009. 55(1-3): p. 173-201. 

38. Siri-Tarino, P.W., et al., Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr, 2010. 91(3): p. 502-9. https://www.ncbi.nlm.nih.gov/pubmed/20089734

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824150/pdf/ajcn9130502.pdf

39. Siri-Tarino, P.W., et al., Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. The American Journal of Clinical Nutrition, 2010. 91(3): p. 535-546. https://doi.org/10.3945/ajcn.2009.27725

40. Kuipers, R.S., et al., Saturated fat, carbohydrates and cardiovascular disease. Neth J Med, 2011. 69(9): p. 372-8. https://pubmed.ncbi.nlm.nih.gov/21978979/

41. Hooper, L., et al., Reduced or modified dietary fat for preventing cardiovascular disease. Cochrane Database Syst Rev, 2012(5): p. Cd002137. https://pubmed.ncbi.nlm.nih.gov/22592684/

42. Chowdhury, R., et al., Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann Intern Med, 2014. 160(6): p. 398-406. 

43. Schwingshackl, L. and G. Hoffmann, Dietary fatty acids in the secondary prevention of coronary heart disease: a systematic review, meta-analysis and meta-regression. BMJ Open, 2014. 4(4): p. e004487. http://bmjopen.bmj.com/content/4/4/e004487.abstract

44. Hooper, L., et al., Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev, 2015(6): p. Cd011737. https://pubmed.ncbi.nlm.nih.gov/26068959/

45. de Souza, R.J., et al., Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. Bmj, 2015. 351: p. h3978. https://pubmed.ncbi.nlm.nih.gov/26268692/

46. Harcombe, Z., J.S. Baker, and B. Davies, Evidence from prospective cohort studies does not support current dietary fat guidelines: a systematic review and meta-analysis. Br J Sports Med, 2016. https://www.ncbi.nlm.nih.gov/pubmed/27697938

http://bjsm.bmj.com/content/early/2016/10/03/bjsports-2016-096550.long

47. Ramsden, C.E., et al., Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968-73). Bmj, 2016. 353: p. i1246. https://pubmed.ncbi.nlm.nih.gov/27071971/

48. Dehghan, M., et al., Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet, 2017. 390(10107): p. 2050-2062. https://doi.org/10.1016/S0140-6736(17)32252-3

49. Hamley, S., The effect of replacing saturated fat with mostly n-6 polyunsaturated fat on coronary heart disease: a meta-analysis of randomised controlled trials. Nutrition Journal, 2017. 16(1): p. 30. https://doi.org/10.1186/s12937-017-0254-5

50. Dehghan, M., et al., Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. The Lancet, 2018. 392(10161): p. 2288-2297. http://www.sciencedirect.com/science/article/pii/S0140673618318129

51. DuBroff, R. and M. de Lorgeril, Fat or fiction: the diet-heart hypothesis. BMJ Evidence-Based Medicine, 2019: p. bmjebm-2019-111180. http://ebm.bmj.com/content/early/2019/07/10/bmjebm-2019-111180.abstract

52. Heileson, J.L., Dietary saturated fat and heart disease: a narrative review. Nutrition Reviews, 2019. https://doi.org/10.1093/nutrit/nuz091

53. Khan, S.U., et al., Effects of Nutritional Supplements and Dietary Interventions on Cardiovascular Outcomes: An Umbrella Review and Evidence Map. Annals of Internal Medicine, 2019. 171(3): p. 190-198. https://doi.org/10.7326/M19-0341

54. Zhu, Y., Y. Bo, and Y. Liu, Dietary total fat, fatty acids intake, and risk of cardiovascular disease: a dose-response meta-analysis of cohort studies. Lipids in Health and Disease, 2019. 18(1): p. 91. https://doi.org/10.1186/s12944-019-1035-2

55. Astrup, A., et al., Saturated Fats and Health: A Reassessment and Proposal for Food-based Recommendations: JACC State-of -the-Art Review. Journal of the American College of Cardiology, 2020. http://www.sciencedirect.com/science/article/pii/S0735109720356874

56. Sendra, E., Dairy Fat and Cardiovascular Health. Foods, 2020. 9(6). https://pubmed.ncbi.nlm.nih.gov/32604766/

57. Keys, A., Atherosclerosis: a problem in newer public health. J Mt Sinai Hosp N Y, 1953. 20(2): p. 118-39. https://pubmed.ncbi.nlm.nih.gov/13085148/

58. Yerushalmy, J. and H.E. Hilleboe, Fat in the diet and mortality from heart disease; a methodologic note. N Y State J Med, 1957. 57(14): p. 2343-54. https://pubmed.ncbi.nlm.nih.gov/13441073/

59. Grasgruber, P., et al., Food consumption and the actual statistics of cardiovascular diseases: an epidemiological comparison of 42 European countries. Food Nutr Res, 2016. 60: p. 31694. https://www.ncbi.nlm.nih.gov/pubmed/27680091

60. Young, S.S. and A. Karr, Deming, data and observational studies. Significance, 2011. 8(3): p. 116-120. https://doi.org/10.1111/j.1740-9713.2011.00506.x

61. Appleby, P.N., et al., Mortality in vegetarians and comparable nonvegetarians in the United Kingdom. The American journal of clinical nutrition, 2016. 103(1): p. 218-230. https://www.ncbi.nlm.nih.gov/pubmed/26657045

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691673/

62. Mihrshahi, S., et al., Vegetarian diet and all-cause mortality: Evidence from a large population-based Australian cohort - the 45 and Up Study. Prev Med, 2017. 97: p. 1-7. https://pubmed.ncbi.nlm.nih.gov/28040519/

63. Archer, E., G. Pavela, and C.J. Lavie, The Inadmissibility of What We Eat in America and NHANES Dietary Data in Nutrition and Obesity Research and the Scientific Formulation of National Dietary Guidelines. Mayo Clin Proc, 2015. 90(7): p. 911-26. 

64. Archer, E., M.L. Marlow, and C.J. Lavie, Controversy and debate: Memory-Based Methods Paper 1: the fatal flaws of food frequency questionnaires and other memory-based dietary assessment methods. J Clin Epidemiol, 2018. 104: p. 113-124. http://www.sciencedirect.com/science/article/pii/S0895435617313756

65. Ioannidis, J.A., The challenge of reforming nutritional epidemiologic research. JAMA, 2018. http://dx.doi.org/10.1001/jama.2018.11025

66. Ioannidis, J., Why Most Published Research Findings Are False. PLoS medicine, 2005. 2: p. e124. https://doi.org/10.1371/journal.pmed.0020124

67. Ornish, D., et al., Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet, 1990. 336(8708): p. 129-33. https://pubmed.ncbi.nlm.nih.gov/1973470/

68. Howard, B.V., et al., Low-fat dietary pattern and risk of cardiovascular disease: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA, 2006. 295(6): p. 655-66. https://www.ncbi.nlm.nih.gov/pubmed/16467234

69. Beresford, S.A., et al., Low-fat dietary pattern and risk of colorectal cancer: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA, 2006. 295(6): p. 643-54. https://www.ncbi.nlm.nih.gov/pubmed/16467233

70. Prentice, R.L., et al., Low-fat dietary pattern and risk of invasive breast cancer: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA, 2006. 295(6): p. 629-42. https://www.ncbi.nlm.nih.gov/pubmed/16467232

71. Taubes, G., Good calories, bad calories : challenging the conventional wisdom on diet, weight control, and disease. 1st ed. 2007, New York: Knopf. xxv, 601 p. Table of contents only http://www.loc.gov/catdir/toc/ecip0711/2007006794.html

72. Ramsden, C.E., et al., Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ : British Medical Journal, 2013. 346: p. e8707. http://www.bmj.com/content/346/bmj.e8707.abstract

73. Khaw, K.-T., et al., Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. BMJ Open, 2018. 8(3): p. e020167. http://bmjopen.bmj.com/content/8/3/e020167.abstract

74. Creighton, B.C., et al., Paradox of hypercholesterolaemia in highly trained, keto-adapted athletes. BMJ Open Sport &amp; Exercise Medicine, 2018. 4(1). http://bmjopensem.bmj.com/content/4/1/e000429.abstract

75. Phinney, S.D., et al., The transient hypercholesterolemia of major weight loss. Am J Clin Nutr, 1991. 53(6): p. 1404-10. 

76. Hockley, T.G., M, European Cholesterol Guidelines Report. 2017: P.A. Centre. https://policy-centre.com/wp-content/uploads/2017/04/European-Cholesterol-Guidelines07.pdf

77. Bartlett, J., et al., Is Isolated Low High-Density Lipoprotein Cholesterol a Cardiovascular Disease Risk Factor? New Insights From the Framingham Offspring Study. Circ Cardiovasc Qual Outcomes, 2016. 9(3): p. 206-212. https://pubmed.ncbi.nlm.nih.gov/27166203/

78. Assmann, G. and H. Schulte, Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Prospective Cardiovascular Münster study. Am J Cardiol, 1992. 70(7): p. 733-7. 

79. Kawamoto, R., et al., Low density lipoprotein cholesterol and all-cause mortality rate: findings from a study on Japanese community-dwelling persons. Lipids in Health and Disease, 2021. 20(1): p. 105. https://doi.org/10.1186/s12944-021-01533-6

80. Feinman, R.D. and J.S. Volek, Low carbohydrate diets improve atherogenic dyslipidemia even in the absence of weight loss. Nutrition & metabolism, 2006. 3: p. 24-24. https://www.ncbi.nlm.nih.gov/pubmed/16790045

https://www.ncbi.nlm.nih.gov/pmc/PMC1488852/

81. Volek, J.S., et al., Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome. Progress in Lipid Research, 2008. 47(5): p. 307-318. http://www.sciencedirect.com/science/article/pii/S0163782708000167

82. Hallberg, S.J., et al., Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study. Diabetes Ther, 2018. 9(2): p. 583-612. https://pubmed.ncbi.nlm.nih.gov/29417495/

83. Borén, J., et al., Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 2020. 41(24): p. 2313-2330. https://doi.org/10.1093/eurheartj/ehz962

84. Penson, P.E., et al., Associations between very low concentrations of low density lipoprotein cholesterol, high sensitivity C-reactive protein, and health outcomes in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) study. Eur Heart J, 2018. 39(40): p. 3641-3653. https://pubmed.ncbi.nlm.nih.gov/30165636/

85. Willeit, P., et al., Low-Density Lipoprotein Cholesterol Corrected for Lipoprotein(a) Cholesterol, Risk Thresholds, and Cardiovascular Events. J Am Heart Assoc, 2020. 9(23): p. e016318. https://pubmed.ncbi.nlm.nih.gov/33222611/

86. Noto, H., et al., Low-Carbohydrate Diets and All-Cause Mortality: A Systematic Review and Meta-Analysis of Observational Studies. PLOS ONE, 2013. 8(1): p. e55030. https://doi.org/10.1371/journal.pone.0055030

87. Mazidi, M., et al., P5409Low-carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling prospective studies. European Heart Journal, 2018. 39(suppl_1). https://doi.org/10.1093/eurheartj/ehy566.P5409

88. Seidelmann, S.B., et al., Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. The Lancet Public Health, 2018. 3(9): p. e419-e428. http://www.sciencedirect.com/science/article/pii/S246826671830135X

https://www.thelancet.com/pdfs/journals/lanpub/PIIS2468-2667(18)30135-X.pdf

89. Lagiou, P., et al., Low carbohydrate-high protein diet and mortality in a cohort of Swedish women. J Intern Med, 2007. 261(4): p. 366-74. https://pubmed.ncbi.nlm.nih.gov/17391111/

90. Trichopoulou, A., et al., Low-carbohydrate-high-protein diet and long-term survival in a general population cohort. Eur J Clin Nutr, 2007. 61(5): p. 575-81. https://pubmed.ncbi.nlm.nih.gov/17136037/

91. Fung, T.T., et al., Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med, 2010. 153(5): p. 289-98. https://pubmed.ncbi.nlm.nih.gov/20820038/

92. Nilsson, L.M., et al., Low-carbohydrate, high-protein score and mortality in a northern Swedish population-based cohort. Eur J Clin Nutr, 2012. 66(6): p. 694-700. https://www.nature.com/articles/ejcn20129.pdf

93. Johnston, B.C., et al., Comparison of Weight Loss Among Named Diet Programs in Overweight and Obese Adults: A Meta-analysis. JAMA, 2014. 312(9): p. 923-933. https://doi.org/10.1001/jama.2014.10397

94. Buga, A., et al., Extended Ketogenic Diet and Physical Training Intervention in Military Personnel. Military Medicine, 2019. 184(9-10): p. e538-e547. https://dx.doi.org/10.1093/milmed/usz046

95. Chawla, S., et al., The Effect of Low-Fat and Low-Carbohydrate Diets on Weight Loss and Lipid Levels: A Systematic Review and Meta-Analysis. Nutrients, 2020. 12(12). https://pubmed.ncbi.nlm.nih.gov/33317019/

96. Falkenhain, K., et al., Keyto App and Device versus WW App on Weight Loss and Metabolic Risk in Adults with Overweight or Obesity: A Randomized Trial. Obesity, 2021. https://pubmed.ncbi.nlm.nih.gov/34124856/

97. Aamodt, S., Why Diets Make Us Fat: The Unintended Consequences of Our Obsession with Weight Loss. 2016. 204. https://amzn.to/3CptAFM

98. Fothergill, E., et al., Persistent metabolic adaptation 6 years after "The Biggest Loser" competition. Obesity (Silver Spring), 2016. 24(8): p. 1612-9. https://pubmed.ncbi.nlm.nih.gov/27136388/

99. McKenzie, A.L., et al., Type 2 Diabetes Prevention Focused on Normalization of Glycemia: A Two-Year Pilot Study. Nutrients, 2021. 13(3): p. 749. https://www.mdpi.com/2072-6643/13/3/749

100. Murphy, N.E., C.T. Carrigan, and L.M. Margolis, High-Fat Ketogenic Diets and Physical Performance: A Systematic Review. Advances in Nutrition, 2020. https://doi.org/10.1093/advances/nmaa101

101. Gardner, C.D., et al., Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical Trial.JAMA, 2018. 319(7): p. 667-679. https://doi.org/10.1001/jama.2018.0245

102. Ludwig, D.S., et al., The carbohydrate-insulin model: a physiological perspective on the obesity pandemic.The American Journal of Clinical Nutrition, 2021. https://doi.org/10.1093/ajcn/nqab270

103. Aronica, L., et al., Examining differences between overweight women and men in 12-month weight loss study comparing healthy low-carbohydrate vs. low-fat diets. International Journal of Obesity, 2020. https://doi.org/10.1038/s41366-020-00708-y

104. Lindeberg, S., et al., Age relations of cardiovascular risk factors in a traditional Melanesian society: the Kitava Study. The American Journal of Clinical Nutrition, 1997. 66(4): p. 845-852. https://pubmed.ncbi.nlm.nih.gov/9322559/

105. Lindeberg, S., et al., Low serum insulin in traditional Pacific Islanders--the Kitava Study. Metabolism, 1999. 48(10): p. 1216-9. https://www.metabolismjournal.com/article/S0026-0495(99)90258-5/pdf

106. Sacks, F.M., et al., Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation, 2017. 136(3): p. e1-e23. https://pubmed.ncbi.nlm.nih.gov/28620111/

107. Blasbalg, T.L., et al., Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr, 2011. 93(5): p. 950-62. https://pubmed.ncbi.nlm.nih.gov/21367944/

108. Alvheim, A.R., et al., Dietary linoleic acid elevates endogenous 2-arachidonoylglycerol and anandamide in Atlantic salmon (Salmo salar L.) and mice, and induces weight gain and inflammation in mice. Br J Nutr, 2013. 109(8): p. 1508-17. https://pubmed.ncbi.nlm.nih.gov/22883314/

109. Alvheim, A.R., et al., Dietary linoleic acid elevates the endocannabinoids 2-AG and anandamide and promotes weight gain in mice fed a low fat diet. Lipids, 2014. 49(1): p. 59-69. https://pubmed.ncbi.nlm.nih.gov/24081493/

110. Desmarchelier, C., et al., Diet-induced obesity in ad libitum-fed mice: food texture overrides the effect of macronutrient composition. British Journal of Nutrition, 2013. 109(8): p. 1518-1527. https://www.cambridge.org/core/article/dietinduced-obesity-in-ad-libitumfed-mice-food-texture-overrides-the-effect-of-macronutrient-composition/725D71275CF7399332CEC8C9C76BE23F

111. Hall, K.D., et al., Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab, 2019. 30(1): p. 67-77.e3. https://pubmed.ncbi.nlm.nih.gov/31105044/

112. Heaton, K.W., et al., Particle size of wheat, maize, and oat test meals: effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro. The American Journal of Clinical Nutrition, 1988. 47(4): p. 675-682. https://doi.org/10.1093/ajcn/47.4.675

113. Juntunen, K.S., et al., Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects. The American Journal of Clinical Nutrition, 2002. 75(2): p. 254-262. https://doi.org/10.1093/ajcn/75.2.254

114. Juntunen, K.S., et al., Structural differences between rye and wheat breads but not total fiber content may explain the lower postprandial insulin response to rye bread. The American Journal of Clinical Nutrition, 2003. 78(5): p. 957-964. https://doi.org/10.1093/ajcn/78.5.957

115. Sumithran, P., et al., Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur J Clin Nutr, 2013. 67(7): p. 759-64. https://www.ncbi.nlm.nih.gov/pubmed/23632752

116. Phinney, S.D., et al., The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism, 1983. 32(8): p. 769-76. https://pubmed.ncbi.nlm.nih.gov/6865776/

117. Hill, J.C. and I.S. Millan, Validation of musculoskeletal ultrasound to assess and quantify muscle glycogen content. A novel approach. Phys Sportsmed, 2014. 42(3): p. 45-52. https://pubmed.ncbi.nlm.nih.gov/25295766/

118. Greene, J., et al., State-of-the-Art Methods for Skeletal Muscle Glycogen Analysis in Athletes - The Need for Novel Non-Invasive Techniques. Biosensors, 2017. 7. https://www.ncbi.nlm.nih.gov/pubmed/28241495

119. Hettinga, F.J., A.M. Edwards, and B. Hanley, The Science Behind Competition and Winning in Athletics: Using World-Level Competition Data to Explore Pacing and Tactics. Frontiers in Sports and Active Living, 2019. 1(11). https://www.frontiersin.org/article/10.3389/fspor.2019.00011

120. Burke, L.M., Re-Examining High-Fat Diets for Sports Performance: Did We Call the 'Nail in the Coffin' Too Soon? Sports Med, 2015. 45 Suppl 1(Suppl 1): p. S33-49. https://pubmed.ncbi.nlm.nih.gov/26553488/

121. Stellingwerff, T., et al., Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. American Journal of Physiology - Endocrinology And Metabolism, 2006. 290(2): p. 380-388. https://pubmed.ncbi.nlm.nih.gov/16188909/

122. Peters, S.J., Regulation of PDH activity and isoform expression: diet and exercise. Biochemical Society Transactions, 2003. 31(6): p. 1274-1280. http://www.biochemsoctrans.org/content/ppbiost/31/6/1274.full.pdf

123. Wood, T., Lost Metabolic Machinery During Ketosis? Depends Where You Are Looking. Strength & Conditioning Journal, 2017. 39(5). https://journals.lww.com/nsca-scj/Fulltext/2017/10000/Lost_Metabolic_Machinery_During_Ketosis__Depends.13.aspx

124. Burke, L.M., et al., Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol, 2017. 595(9): p. 2785-2807. https://pubmed.ncbi.nlm.nih.gov/28012184/

125. Shaw, D.M., et al., Effect of a Ketogenic Diet on Submaximal Exercise Capacity and Efficiency in Runners.Med Sci Sports Exerc, 2019. 51(10): p. 2135-2146. https://pubmed.ncbi.nlm.nih.gov/31033901/

126. Burke, L.M., et al., Crisis of confidence averted: Impairment of exercise economy and performance in elite race walkers by ketogenic low carbohydrate, high fat (LCHF) diet is reproducible. PLoS One, 2020. 15(6): p. e0234027. https://pubmed.ncbi.nlm.nih.gov/32497061/

127. Burke, L.M. and J.A. Hawley, Swifter, higher, stronger: What’s on the menu? Science, 2018. 362(6416): p. 781. http://science.sciencemag.org/content/362/6416/781.abstract

128. Miller, V.J., et al., A ketogenic diet combined with exercise alters mitochondrial function in human skeletal muscle while improving metabolic health. American Journal of Physiology-Endocrinology and Metabolism, 2020. https://doi.org/10.1152/ajpendo.00305.2020

129. Lane, N., A unifying view of ageing and disease: The double-agent theory. Journal of theoretical biology, 2004. 225: p. 531-40. https://pubmed.ncbi.nlm.nih.gov/14615212/

130. Miller, V.J., F.A. Villamena, and J.S. Volek, Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. Journal of nutrition and metabolism, 2018. 2018: p. 5157645-5157645. https://pubmed.ncbi.nlm.nih.gov/29607218

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828461/

131. San-Millán, I. and G.A. Brooks, Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals.Sports Medicine, 2018. 48(2): p. 467-479. https://doi.org/10.1007/s40279-017-0751-x

132. Cipryan, L., et al., Effects of a 4-Week Very Low-Carbohydrate Diet on High-Intensity Interval Training Responses. Journal of Sports Science & Medicine, 2018. 17(2): p. 259-268. https://www.ncbi.nlm.nih.gov/pubmed/29769827

https://www.ncbi.nlm.nih.gov/pmc/PMC5950743/

133. Prins, P.J., et al., High Rates of Fat Oxidation Induced by a Low-Carbohydrate, High-Fat Diet, Do Not Impair 5-km Running Performance in Competitive Recreational Athletes. J Sports Sci Med, 2019. 18(4): p. 738-750. 

134. McSwiney, F.T., et al., Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism, 2018. 81: p. 25-34. https://pubmed.ncbi.nlm.nih.gov/29208366/

135. Mirtschin, J.G., et al., Organization of Dietary Control for Nutrition-Training Intervention Involving Periodized Carbohydrate Availability and Ketogenic Low-Carbohydrate High-Fat Diet. International Journal of Sport Nutrition and Exercise Metabolism, 2018. 28(5): p. 480-489. https://journals.humankinetics.com/view/journals/ijsnem/28/5/article-p480.xml

136. Dostal, T., et al., Effects of a 12-Week Very-Low Carbohydrate High-Fat Diet on Maximal Aerobic Capacity, High-Intensity Intermittent Exercise, and Cardiac Autonomic Regulation: Non-randomized Parallel-Group Study.Frontiers in Physiology, 2019. 10(912). https://www.frontiersin.org/article/10.3389/fphys.2019.00912

137. Volek, J.S., et al., Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism, 2016. 65(3): p. 100-110. http://www.sciencedirect.com/science/article/pii/S0026049515003340

138. Areta, J.L. and W.G. Hopkins, Skeletal Muscle Glycogen Content at Rest and During Endurance Exercise in Humans: A Meta-Analysis. Sports Med, 2018. 48(9): p. 2091-2102. https://pubmed.ncbi.nlm.nih.gov/29923148/

139. Brooks, G.A., The Science and Translation of Lactate Shuttle Theory. Cell Metab, 2018. 27(4): p. 757-785. https://pubmed.ncbi.nlm.nih.gov/29617642/

140. Greene, D.A., et al., A Low-Carbohydrate Ketogenic Diet Reduces Body Mass Without Compromising Performance in Powerlifting and Olympic Weightlifting Athletes. J Strength Cond Res, 2018. 32(12): p. 3373-3382. https://pubmed.ncbi.nlm.nih.gov/30335720/

141. Hetlelid, K.J., et al., Rethinking the role of fat oxidation: substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners. BMJ Open Sport &amp; Exercise Medicine, 2015. 1(1). http://bmjopensem.bmj.com/content/1/1/e000047.abstract

142. Cahill, G.F., Jr., Fuel metabolism in starvation. Annu Rev Nutr, 2006. 26: p. 1-22. https://pubmed.ncbi.nlm.nih.gov/16848698/

143. Cox, P., et al., Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metabolism, 2016. 24. https://pubmed.ncbi.nlm.nih.gov/27475046/

144. Sherman, W.M., et al., Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med, 1981. 2(2): p. 114-8. https://pubmed.ncbi.nlm.nih.gov/7333741/

145. MacLeod, D., et al., Physiological determinants of climbing-specific finger endurance and sport rock climbing performance. J Sports Sci, 2007. 25(12): p. 1433-43. 

146. Ortega, J.O., et al., Muscle force, work and cost: a novel technique to revisit the Fenn effect. J Exp Biol, 2015. 218(Pt 13): p. 2075-82. https://pubmed.ncbi.nlm.nih.gov/25964423/

147. Hargreaves, M. and L.L. Spriet, Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2020. https://doi.org/10.1038/s42255-020-0251-4

148. Baker, J.S., M.C. McCormick, and R.A. Robergs, Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. Journal of nutrition and metabolism, 2010. 2010: p. 905612-905612. https://pubmed.ncbi.nlm.nih.gov/21188163

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005844/

149. Newcomer, B.R., M.D. Boska, and H.P. Hetherington, Non-Pi buffer capacity and Initial phosphocreatine breakdown and resynthesis kinetics of human gastrocnemius/soleus muscle groups using 0.5 s time-resolved 31P MRS at 4.1 T. NMR in Biomedicine, 1999. 12(8): p. 545-551. https://pubmed.ncbi.nlm.nih.gov/10668047/

150. Artioli, G.G., et al., Determining the contribution of the energy systems during exercise. J Vis Exp, 2012(61). https://pubmed.ncbi.nlm.nih.gov/22453254/

Big Walks episode 1

Something that has really helped us get through the lockdown has been doing big walks from the house with Freida. Over the weeks Freida has realised how far she can walk in a few hours and we’ve seen a great deal of sunshine, forest, wildlife and many other interesting discoveries in various corners of Lochaber.

One objective Freida had was to walk to school which is about 14 miles. We’ve done this a few times now by various routes. We made a wee video on Freida’s YouTube about our first walk to school. I’m highly biased but I think Freida’s commentary is great.